Two Semigroup Elements Can Commute With Any Positive Rational Probability

Vadim Ponomarenko (vadim@sciences.sdsu.edu) and Natalie Selinski (selin-
ski@rohan.sdsu.edu), San Diego State University, San Diego, CA 92182

In a recent article in this Journal, Givens [2] defined the commuting probability of a finite semigroup as the probability that $x \star y=y \star x$ when x and y are chosen independently and uniformly at random from the semigroup. She asked which commuting probabilities can be achieved, and partially answered this question by showing that they are dense in $(0,1]$. We prove that every rational in $(0,1]$ can be achieved.

We begin by recalling Lagrange's celebrated four-square theorem (found, e.g., in [1]). It states that every natural number can be expressed as the sum of four integer squares; furthermore, three squares suffice unless the number is of the form $4^{k}(8 m+7)$.

Our proof requires four constructions. It is unknown whether a single semigroup family might suffice.

RATIONALS IN ($0,1 / 3]$

Given positive integers a, b, c and nonnegative integer k, we define the family of semigroups $S(a, b, c, k)$, as follows. The ground set is $A \cup B \cup C \cup$

D R A F TFebruary 14,2012 , $12: 32 \mathrm{pmD}$ R A F T

$D_{1} \cup D_{2} \cup \cdots \cup D_{k}$, where $|A|=a,|B|=b,|C|=c$, and $\left|D_{1}\right|=\left|D_{2}\right|=$ $\cdots=\left|D_{k}\right|=2$. Let $\alpha \in A, \beta \in B, \gamma \in C, \delta_{1} \in D_{1}, \ldots, \delta_{k} \in D_{k}$, and define f on our semigroup by

$$
f(x)= \begin{cases}\alpha & x \in A \\ \beta & x \in B \\ \gamma & x \in C \\ \delta_{i} & x \in D_{i}\end{cases}
$$

and define the semigroup operation itself as $x \star y=f(x)$; it is routine to check that this is associative with commuting probability

$$
\frac{a^{2}+b^{2}+c^{2}+4 k}{(a+b+c+2 k)^{2}}
$$

Suppose the desired commuting probability is $\frac{p}{q}$. Set $M=16 p q-8 q+3=$ $8 q(2 p-1)+3$. This is a natural number not of the form $4^{k}(8 m+7)$ and hence we can find natural numbers x, y, z satisfying $x^{2}+y^{2}+z^{2}=M$. Set $a=x+1, b=y+1, c=z+1$. These are positive integers. Set $k=\frac{4 q-a-b-c}{2}$. Since M is odd, one or three of x, y, z are odd, hence zero or two of a, b, c are odd, hence k is an integer. It is a routine exercise using Lagrange multipliers to show that $x+y+z$ is maximized on the surface $x^{2}+y^{2}+z^{2}=M$ for $x=y=z=\sqrt{M / 3}$. Hence $a+b+c \leq 3(1+\sqrt{M / 3})$. This is at most $4 q$ hence k is nonnegative. Otherwise $3(1+\sqrt{M / 3})>4 q$, which simplifies to $16 q(3 p-q)>0$, which contradicts $\frac{p}{q} \leq \frac{1}{3}$. The commuting

D R A F TFebruary 14, 2012, 12:32pmD R A F T

probability of $S(a, b, c, k)$ is

$$
\begin{gathered}
\frac{a^{2}+b^{2}+c^{2}+4 k}{(a+b+c+2 k)^{2}}=\frac{(a-1)^{2}+(b-1)^{2}+(c-1)^{2}+2(a+b+c)-3+4 k}{(4 q)^{2}}= \\
=\frac{(16 p q-8 q+3)+2(4 q-2 k)-3+4 k}{16 q^{2}}=\frac{16 p q}{16 q^{2}}=\frac{p}{q}
\end{gathered}
$$

RATIONALS IN $(2 / 3,1]$

For positive integers a, b, c and nonnegative integer k, we define the family of semigroups $T(a, b, c, k)$, as follows. The ground set is as before. We define f this time via

$$
f(x)= \begin{cases}i & x \in D_{i} \\ k+1 & x \in C \\ k+2 & x \in B \\ k+3 & x \in A\end{cases}
$$

If $f(x)>f(y)$, we let $x \star y=y \star x=x$; if $f(x)=f(y)$, we define $x \star y=x$.
It is routine to check that this is associative with commuting probability

$$
\frac{(a+b+c+2 k)^{2}+(a+b+c+2 k)-a^{2}-b^{2}-c^{2}-4 k}{(a+b+c+2 k)^{2}}
$$

Let the desired commuting probability be $\frac{p}{q}$. Set $M=16 q^{2}-16 p q-4 q+$ $3=4 q(4 q-4 p-1)+3 ;$ this is a natural number not of the form $4^{k}(8 m+7)$ hence we can find natural numbers x, y, z satisfying $x^{2}+y^{2}+z^{2}=M$. Set $a=x+1, b=y+1, c=z+1$; these are positive integers. Set $k=\frac{4 q-a-b-c}{2}$. As before k is an integer and $x+y+z$ is maximized for

D R A F TFebruary 14, 2012, 12:32pmD R A F T

$x=y=z=\sqrt{M / 3}$. Hence $a+b+c \leq 3(1+\sqrt{M / 3})$. This is at most $4 q$ (and hence k is nonnegative); otherwise $3(1+\sqrt{M / 3})>4 q$, which simplifies to $4 q(4(2 q-3 p)+3)>0$, contradicting $2 q-3 p \leq-1$. The commuting probability of $T(a, b, c, k)$ is

$$
\begin{gathered}
\frac{(a+b+c+2 k)^{2}+(a+b+c+2 k)-a^{2}-b^{2}-c^{2}-4 k}{(a+b+c+2 k)^{2}}= \\
=\frac{16 q^{2}+4 q-(a-1)^{2}-(b-1)^{2}-(c-1)^{2}-2(a+b+c)+3-4 k}{(4 q)^{2}}= \\
=\frac{16 q^{2}+4 q-M-2(4 q-2 k)+3-4 k}{16 q^{2}}=\frac{16 p q}{16 q^{2}}=\frac{p}{q}
\end{gathered}
$$

RATIONALS IN ($1 / 2,2 / 3]$

Let S be a semigroup on $\{1,2, \ldots, n\}$, with operation \star and commuting probability $\frac{m}{n^{2}}$. We define a new semigroup on $\{1,2, \ldots, n\} \cup\{-1,-2, \ldots,-n\}$, with operation

$$
x \circledast y= \begin{cases}-(|x| \star|y|) & x, y<0 \\ |x| \star|y| & \text { otherwise. }\end{cases}
$$

It is routine to check that this is associative with commuting probability

$$
\frac{2 m+2 n^{2}}{(2 n)^{2}}=\frac{m+n^{2}}{2 n^{2}}=\left(\frac{m}{n^{2}}+1\right) / 2
$$

We apply this construction to the semigroups $S(a, b, c, k)$ and observe that $y=(x+1) / 2$ is a bijection between the rationals in $(0,1 / 3]$ and the rationals in $(1 / 2,2 / 3]$.

D R A F TFebruary 14, 2012, 12:32pmD R A F T

RATIONALS IN (1/3, $1 / 2]$

Let T be a semigroup on $\{1,2, \ldots, n\}$, with operation \star and commuting probability $\frac{m}{n^{2}}$. We define a new semigroup on $\{1,2, \ldots, n\} \cup\{-1,-2, \ldots,-n\}$, with operation

$$
x \circledast y= \begin{cases}-(|x| \star|y|) & x<0 \\ |x| \star|y| & x>0\end{cases}
$$

It is routine to check that this is associative with commuting probability

$$
\frac{2 m}{(2 n)^{2}}=\left(\frac{m}{n^{2}}\right) / 2
$$

We apply this construction to $T(a, b, c, k)$ and observe that $y=x / 2$ is a bijection between the rationals in $(2 / 3,1]$ and the rationals in $(1 / 3,1 / 2]$.

REFERENCES

1. H. Davenport. The higher arithmetic: An introduction to the theory of numbers. Harper, New York NY, 1960.
2. B. Givens, The probability that two semigroup elements commute can be almost anything. College Math. J. 39, no. 5 (2008) 399-400.

D R A F TFebruary 14, 2012, 12:32pmD R A F T

